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Abstraet--A theoretical and experimental study is made of the stability and breakup of an extending viscous 
liquid cylindrical thread suspended in an immiscible viscous liquid undergoing extensional flow. 

It is shown that disturbances initiated as the thread is formed will in general as time proceeds be damped, 
then amplified and finally damped again. By considering disturbances being continually given to the system it 
is thus found that a disturbance which dominates at one moment will be completely different from that at any 
other. Assuming that breakup occurs when the disturbance amplitude becomes equal to cylinder radius, 
results are obtained for the time to breakup and for the final drop size resulting from breakup in terms of fluid 
properties, extension rate and the amplitude of disturbance given to system. 

These results were confirmed by examining, with the aid of cinematography, the breakup of a liquid thread 
in hyperbolic flow. 

INTRODUCTION 

It is well known (Tomotika 1935, 1936; Rumscheidt & Mason 1961a, 1962; Goldsmith & Mason 
1963; Goren 1962, 1964) that a cylindrical liquid thread suspended in a viscous medium, or a liquid 
annulus on a wire or on the inside of a tube, will develop small radial disturbances which grow 
until the eventual breakup into a multitude of droplets or rings. This phenomenon is of interest in 
connection with a variety of topics (emulsification of liquids, for example) and has been studied 
extensively for the case in which the fluids were at rest except for the small disturbances which 
were assumed to develop slowly. 

On the other hand, Tomotika (1936) considered the growth of disturbances when the thread is 
continuously extended under conditions similar to those prevailing in axisymmetric extensional 
flow. He tested his theory using a few of Taylor's (1934) experimental results but the data were 
too limited to afford a conclusive test. In this paper, we study this phenomenon theoretically, 
showing how Tomotika's theory can be improved, and present confirming experimental data. 

THEORETICAL PART 

We consider an infinitely long neutrally buoyant liquid thread of radius a and viscosity "0" 
suspended in an immiscible liquid of viscosity r/. The suspending fluid undergoes an 
axisymmetric extensional flow so that far away from the liquid thread, the flow velocity u with 
components in the cylindrical coordinate system (r, ¢, z) illustrated in figure 1 tends to U given by 

1 
Ur = - -~Gr, Us = O, U~ = Gz, [1] 

Z 

where Ur, Us and Uz are respectively the r-, ¢-  and z-components of velocity and G is the 
extension rate. We assume that the effect of inertia in the fluid is negligible compared with that of 
viscosity so that the velocity u outside and u* inside the thread each satisfy the creeping motion 
equations. Since the velocity U defined in [1] satisfies identically the creeping motion equations 

V ' U = O  and , 1 V 2 U - V P = O ,  [2] 

where the pressure P is constant and gives rise to stress components P,j relative to the cylindrical 
coordinates given by 

Prr = - P  + 2r/0-0~--U ~ = - P  - r/G, [3] 
( / /  
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Figure 1. Cylindrical coordinates (r. $, z) for the axisymmetric extensional flow; the direction of extension is 
the z-axis. 

- aUz 
Pzz = - P  + 2 ~ - ~ -  z = - P  + 2r/G, [4] 

[au,+ au,~ o Prz=~l~-'~- r -~-z ] = , [5] 

it is seen that the flow field inside and outside of the undeformed cylinder r = a is in fact U 
everywhere, since it satisfies the required conditions of continuity of velocity and of tangential 

stress on r = a. Hov/ever, since the normal stress difference is balanced by the interracial tension 
y, the constant pressures P* inside and P outside the liquid cylinder are related by 

_ Y  (P* + r/*G) - (P + "0G) - - .  [6] a 

We will consider the growth of axisymmetric disturbances and take the cylinder to have a shape 
r = a +El(z, t), the disturbance flows being ~u~ and Eu* outside and inside the thread 

respectively, where E is an arbitrary parameter ,~1. Thus the total velocities are: 

u * = U + ¢ u *  f o r r < a + E f ,  [7] 

u = U + ¢ u ,  f o r r > a + ¢ f .  [8] 

Since U, u and u* must individually satisfy the creeping motion equations, so must u, and u~. 
Thus for u~ (and u*) 

"r/V2ul + Vpl = 0, [9a] 

V" u, = 0, [9b] 

where p~ is the pressure corresponding to u~. Defining the stream function ~, for u~ (and ~* for u*): 

1 aq, (u,)z T aq, [101 
(u,)r=r Oz, = - r  Or 

it follows from [9] that q, (and ~0") satisfies the differential equation: 

2 

(~'-r 202 lror 0 ~ _ ~  02" "02)(~r-r 2 rorl 0 ~__~z) 0 = 0 .  [11] 

We assume that the radial displacement f of the surface of the thread is of the form 
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f = a cos kz, [12] 

where a is the amplitude of the disturbance and k is the wave number related to the wave length 

A by k = 2~r/A. The general solution to [11] which is consistent with the above form of f is found 

to be 
tp = {C~rI~(kr) + C2r~I~(kr) + C3rK~(kr) + C4r2K ](kr)} sin kz [13] 

where L(x)  and K , ( x )  are modified Bessel functions of order n and argument x and Ct, Cz, C3 

and C, are all arbitrary functions of time t. The disturbance flow field must be finite everywhere 

and tend to zero as r ~ ~. Hence, the stream function for the outside liquid must be of the form 

= {B,rK, (kr )  + Bzr2K](kr)} sin kz [14] 

while for the inner liquid, 

qJ* = {A,rI , (kr)  + A2rZI](kr)} sin kz [15] 

where A1, B1, A2, B2 are arbitrary functions of time to be determined by the following boundary 

conditions: 
(1) The total velocities u* and u are continuous on the deformed surface (r = a + ~f) and 

hence since U is continuous there, so must be ut and uL Thus 

(U~f)r = (U,)r, [16a] 

(U~')z = (U,)~ on r = a + ~f. [16b] 

Since u~' (and ul) can be written as expansions of the form: 

* = + . .  [ 1 7 ]  (u,) . . . .  ,s (u*)r=o + et{ a ( u * ) ]  
"L Or J~=o "' 

these boundary conditions, to the lowest order, take the form 

(u*), = (u.)r, [18a] 

(u~)~ = (u,), on r = a. [18b] 

(2) The tangential stress is continuous on the deformed surface. Letting e(p~)~ be the stress 

components corresponding to the disturbance flow eu~ outside the deformed cylinder r = a + El, 

the total stress p,j may be written 

P~J = Po + e(p~)~s, [19] 

which by the form of P~I given by [3]-[5] yields 

p,. = - P  - r/G + E(pl),~, [20] 

p~z = - P  + 2~lG + e(p,), , ,  [21] 

prz = e (p ~),~, [221 

with similar expressions for the total stress inside r = a + ~f ((pl)~i being replaced by (P*)~s, the 
stress components corresponding to u*). 
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F, = p~inj, 

where the outward normal n is from geometrical considerations, 

(n)~ = - E  ° f  + O(E~), 
az 

(n)r = ~ = 1 + 0(~2). 

Hence 
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The hydrodynamic force F~ acting on an element of area of deformed surface r = a + ef is 

[23] 

F~ = p,~(n)~ + p~(n )z = - P  - ~TG + e(p,)~r + O(Ez), 

Fz = p~(n)~  + p=(n)z  = e (p , )~  + ~p  O f _  2~lGE af + 0( 2). 
OZ. OZ 

[24] 

[25] 

[26] 

[27] 

The normal stress F.  and the tangential stress F, on the deformed surface, r = a + ~f are given 

by 

F.  = F , (n  )~ + Fz (n )z = - P  - ~ G  + • (p ~)r~ + 0(e2), [28] 

(F,)z= F z -  F.(n)z  

= ~(pl)r~ - 3~Gefl~f+ O(e~), 
OZ 

[29] 

the boundary condition for continuity of tangential stress then yielding to lowest order: 

, Of -3 r /G~  a-/-f on r = a + e f .  (p*)~z - 3r/ G-~z = (p,L~ oz [301 

By expanding (p*)r~ and (p,)~ about the undeformed surface r = a in a manner similar to that for 

the velocity (see [17]) it is seen that this boundary condition [30] may be applied on r = a. The 

second term on each side of this equation was neglected by Tomotika (1936). 

(3) Balance of the normal stress components by interracial tension. If R~ and R2 are the 

principal radii of curvature of the deformed surface r = a + ef = a + ea cos kz, then 

1 c32r 
R1 - Tz2{1 +0(ez)} = eak2cos kz  +0(e3), [31] 

and 

1 _ 1 + O ( E 2 ) } = l ( l _ e a c o s k z ) + O ( E 2 ) ,  
R2 a +Ea cos kz {1 a 

[32] 

1 1 1 E a ( k 2 a 2 ~ l ) c o s k z + o ( 2 ) .  [33] - - + - -  = --~ 
Rt R2 a a 

The normal stress boundary condition using the expression for the normal stress F, given by [28] 

and neglecting terms of order 2 is given by 

P *  + ~l*G - E(p*)rr -- P - ~G + E(p,)rr = ~ 4 7~a (k  2 a 2 - 1 )  c ° s  
a a [341 
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Since the balance of the normal stress on the undeformed surface is given by [6], [34] becomes 

(p *),,. - (p,)r, = 7 ( 1  -- k2a 2) cos kz. [351 

Using the values of ~, 0* given by [14] and [151, the boundary conditions given by [18a], [18b], 
[301 and [35] may be expressed in the following forms 

A,kL(ka  ) + A2kaI'~(ka ) - B~kK,(ka ) - B2kaK ~(ka ) = O, 

A ~kIo(ka) + A2{kaI,(ka) + Io(ka)} + B,kKo(ka) - B2{kaK,(ka) - Ko(ka)} = 0, 

A,(rl*/rl)kI,(ka) + A2OT*/rl)kaIo(ka) - B ,kKl(ka)  + B2kaKo(ka) = (3/2)[('0"/rl) - llGa, [36] 

A,(n*/n )kI',(ka ) + A£(n*/n ){II(ka ) + kaI'[(ka ) - Io(ka )} - B~kK ~(ka ) 

- B2{K~(ka) + kaK~'(ka) + Ko(ka)} = 2k-~Ya (1 - kZa2). 

Next we shall calculate the change of amplitude a with time. At the deformed surface, r = r(z, t), 
the radial velocity ur is the rate of change (dr/dr) following a fluid particle which is given by 

dr Or Or 
ur = ~- = ~ + uz 7zz" [37] 

Substituting [7] and r = a + ~a cos kz into [37] and neglecting terms in e 2 yields 

- ~ G a - ~ t + , { [ A , k I , ( k a ) +  A 2 k a I ~ ( k a ) - ~ G a -  ~-~] cos kz+ [~z d ~ +  Gakz] sin kz} = 0, [38] 

where the value of (u*)r as calculated from the expression for qJ* in [15] has been used. The term 
in E ° gives: 

da 1 
d t -  ~Ga. [39] 

Then if a = a o a t  t = 0  

The term in 1 gives two equations: 

Integration of [41] gives 

a a = e x p ( - ~ f o ' G d t ) .  [40] 

dk 
-dt+ Gk = 0, [41] 

do/ 
- ~Ga + A, kit (ka) + Azkal l (ka)  = -d-{' [42] 

k ( f o )  ko exp - G dt [43] 
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where k = ko at t = 0 and hence 
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A = exp G dt , [44] 
)to 

Ao being the value of the wavelength )t at t = O. The rate of change of the ratio of amplitude to 
thread radius a/a with time is 

d = 1 (da ff da'~, [45] 
d- t (a)  a \ d t  a d t )  

which upon substituting [39] and [42] yields 

d-t ( a ) d  = l[Alkl l(ka) + AzkaI'~(ka)]. [46] 

Solving next [36], which are now regarded as simultaneous linear equations for the four variables 
A1, Az, B, and B2, we obtain A'l and A2 (to simplify we put kA~ = A~, kB, = BI and x = ka): 

A'~ = 1 ~2-~-~--a (1-  z t  r/ x )A,-~3 (-~-~- 1)Gc~z], } 

l c~y A : = -  ~ {2-~-~ (1-  x)Z'A z-~3 (~-* - 1 ) Ga S~z}, 

where 

A=(~)xI '~(x)A,-(~)[(x2+I)L(x)-Xlo(x)]A2+xK'~(x)A3 

- [(x 2 + 1)K~(x) + xKo(x)]A,, 

with Ai, A2, A3, A4, A, and ~2 being 

Al= 
xI;(x) K,(x) 

Io(x ) + xI,(x ) - Ko(x ) 

(~ )x lo (x )  K,(x) 

A 2 

A 3 

l,(x) K,(x) 
I I~,(x) -Ko(x) 
( -~)I , (x)  K,(x) 

xK ',(x ) 
-Ko(x)+ xK,(x) 

-xKo(x) 

A4 z 

xK~(x) 
-Ko(x)+ xK,(x) 

-xKo(x) 

I,(x ) xI~(x ) xK 'l(x ) 
Io(x) Io(x) + xI,(x) -Ko(x) + xK~(x) 

(-~-) I,(x ) (~-~)xlo(x ) -xKo(x ) 

l,(x) xI;(x) K,(x) 
to(x) lo(x) + xI,(x) -Ko(x) 

[47] 

[48] 

[49] 

[50] 

[51] 

[52] 

[53] 
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~,= 
(-~)[(x' + DI,(x)-xlo(x)] 

xli(x) 
Io(x) + xI,(x) 

~,=[ t,~x) 
I Io(X) 

Substituting [47] and [48] in [46] we get: 

where 

xKi(x) (x 2 + 1)K,(x) + xKo(x) 

K,(x) xKi(x) 
-Ko(x) -Ko(x) + xK,(x) 

xK~(x) (x2+ 1)K,(x)+ xKo(x) 

K,(x) xK~(x) 
-Ko(x) -Ko(x) + xK,(x) 

d a 3Ga (a)-- 

C~(x) = ~{I,(x)A,(x) - xI;(x)A2(x)}, 

q~(x) = ½{I,(x);X,(x) - xli(x)TX,(x)}. 

[543 

[55] 

[561 

[57] 

[58] 

fo" '" ) } U'/Xo x-,;~(1 _ 3 G { n *  ao \Xo/ exp L2-~o  - x 2 ) ~ ( x )  2 ~-~-1  7~(x) dt, 

where both x and G are functions of time t. If G is constant, then 

X=Xoexp(-~Gt) ,  

which when substituted into [60] gives 

[64] 

[63] 

Equation [56], which may be expressed as 

may be solved for a/a to give 

OL/Olo t , 

X.ao--eXP fo {2-Y~(1-x')*(x)-~G(-~--l)g~(x)}dt, [60] 

where ao and ao are the values of a and a respectively at t = 0. From [40] and [43] we get 

x(~)(°) (3fo') x~= ko ~oo = e x p  - ~  G d t  , [61] 

where Xo = koao is the value of the dimensionless wave number x at t = 0. Then [40] may be 
written as 

[ x \v3 
a = aO~oj , [62] 
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the value of alao given by [63] then being expressible as 

, ,3-xo _ - (~ -~  1 ) f  x x - '~ (x )dx+~ln (~) ,  In & = ~/Xo ,-, { X-4/3(1 x2)O(x) dx _ Xo x 
ao 3~aoo Jx 

[65] 

giving the fractional change of amplitude of disturbances on the surface of the liquid thread being 

elongated in the steady axisymmetric extensional flow. 

Amplitude a 
Equation [65] gives the value of a/C~o as a function of "q*/7, y/TlGao, Xo and x. Calculations of 

the variation of In c~/C~o with x(<-Xo) for various values of Xo and y/~Gao, and for three values of 
rt*/~7 (= 1.0, 10 -3 and 102) were performed, typical results being shown in figure 2. Details of this 

X 

I0 - z  IO -a I I0 IO 

__.Z_-~ = I 

% 

X 

I0 -2 lO -{ I 
I t l 

o 

xo = 5.0 

__•o6 = i0  'r]"= i a 
' "r/ 0 

0 

-I 

" ~ - 2  

-4 

-6 

X 

I0 -g  I0  - I  I IO 

B 

.q- 

~6 --I( 
Figure 2. Calcula ted values  of lna/ao against  x for (A) ~7*/'q = 10 ~, yhlaoG = 1.0, (B) "0*/rl = 1.0, 
7/~aoG = 10.0 and (C) 7/*/'0 = 103, 3,[~aoG = 10.0. The numbers  designate  values  of the initial wave  number  

Xo. 

calculation are given in appendix II. It is clear from these results that In a/ao for large Xo, say 
Xo > 5.0, initially decreases with time (i.e. as x decreases from x = Xo) and after passing through a 
minimum value denoted by In a,,/ao, begins to increase and then finally decrease again. However 
for very small Xo, say xo = 0.05, In a ]ao decreases monotonically for all time. This means that for 
large Xo, the disturbance whose initial amplitude is So is damped in the initial stage of the 
extension, but at a later stage is amplified and at a still later stage is damped again. Thus some 

disturbances grow while at the same time others decay. 
Since the functions qb(x) and c~(x) each behave like x 2 In x as x tends to 0 [appendix I-A], the 

integrals in [65] are convergent as x tends to 0 thus showing that In a/ao ~ 1/3 In (x/xo) as x -~ 0. 

Thus for every Xo, In a [ao decreases to - ~  as x -~ 0, this behaviour being evident in figure 2. 
It can also be seen in figure 2 that for Xo sufficiently large, that In (a[ao) has a minimum value 
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In (a,./ao) occurring at a value of x (denoted by x,,) which approaches unity as Xo tends to 
infinity. This behaviour can be proved theoretically as follows. The asymptotic form of the 
functions ~(x) and ~(x)  as x --> ~ are (appendix I-B) 

qb(x) ~ ( l  + - ~ ) - l x  - '  , [66] 

I (1 + ~-~)- 'x-1.  [67] q , ( x )  - - 

Thus as Xo~  ~ [with x = 0(1)] 

Xo 3 (l +~)-~Xo2'3 + f(x), [68] x x - " 3 ( 1  - x 2 ) ~ ( x )  d x  ~ - 

f °  x-'~(x ) dx ~ g(x ) [69] 

where f(x), g(x) are functions of x only. Hence as Xo---> 

'n(~oo) - l- yx°~/3[3~TaoG ([-3(l+-~)- 'x°Z/ '+/(x '}]-(-~-l)g(x)+~ ( l n x - l n x ° , ' 2  [70] 

the first term of which is dominant. Hence for xo---)~, In (a[ao) can be approximated by: 

in (~o) _ 3rtao G a  yXo v3 fro x-4/3(1 _ x2)~(x) dx. [71] 

Thus for large Xo, 

yielding 

113 

dxd ( °t ) =-'yx° '~ x-4/3(1- ~oo , ~ a o o  [72] 

:x In a = 0  and ~ x  In a > 0  a t x = l .  [73] 

Hence in (a/ao) has a minimum at x = x,, for Xo sufficiently large, the value of xm ~ 1 as Xo ~ oo. 

Thus for Xo sufficiently large the behaviour of In (a/ao) is always such that as x decreases, it 
initially decreases to a minimum at x = xm (=1) and then increases, only to decrease to -oo as 
x ~ 0. However,  as already noted In (a]ao) will, for small Xo, decrease monotonically as x 
decreases. This can be proved by noting that from the behaviour of qb(x) and ~(x)  as x -o 0, the 
integrals in [65] tend to zero as Xo (and hence x ) - o  0. Thus ln(a/ao)-1/31n(x/xo) as Xo-O 0, 
which decreases monotonically as x decreases from Xo to 0. In this case xm is defined to be zero. 
Thus there is a critical value of Xo above which In (a [ao) has a minimum value and below which 
In (a/ao) has no minimum value, that is to say, the disturbance is damped out for all time. This 
critical value of xo was found to increase as y/~Goa decreases for all r/*/~ calculated. 

Magnification of amplitude a 
We shall now investigate the magnification of disturbances which are assumed to be 

continuously initiated during the extension of the liquid thread and assume that the amplitude of 
such disturbances to the system is independent of the radius of the liquid thread and of the 
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disturbance wave length. Thus at any given time the wave with given wave number x - xo exp 

(-3/2)Gt for which x < xm and a > a.,  which has greatest amplitude is that which starts at a time 

corresponding to x = Xr,. 
Thus the magnification M of a disturbance is 

(i) M = In ( a / a o )  - In (c~,. [ao)  

= I n ( a / a , , )  for x < x , , , a  >am [74a] 

(ii) M = 0 for x < xm, a < am [74b] 

(This is the case of a disturbance initiated at xm which has been amplified and then damped to 

less than its original amplitude.) 

(iii) M = 0 for x > xm [74c] 

(This is the case of a disturbance which up to the present time has been continuously damped.) 

This magnification, M, will, at a given time, be a function of Xo, the initial dimensionless wave 

number. Figure 3 shows the results of the calculation of the magnification M as a function of Xo 

for various fixed values of Gt for typical values of the parameters ( r /* / r /=  10 -3 and 

yh?aoG = 1.0). For a given value of Gt the magnification takes a maximum value at Xo = (Xo)op,. 

This (Xo)opt which is the initial wave number whose disturbance has the largest amplitude at time t, 

is different at different times. 

That a maximum for M always occurs (unless M is identically zero for all Xo) for a fixed t can 

be shown by noting that: 

(i) as Xo tends to 0 (so that x also tends to 0), 

In c~/ao ~ 1/3 In (X/Xo) [75] 

representing a disturbance which always dies away for all time so that x,. = 0 < x, giving M = 0. 

-_10-3 

IC ¢ 

2~ 

0 
I0 -i I0 10 3 10 5 

Xo 

Figure 3. Calculation of  the magnification M as a function of Xo for var ious  fixed values  of  Gt for  
r/*/,q = 10 -3 and 7hlaoG = 1.0. 

(ii) as xo tends to o% x = Xo exp (-3/2Gt) also tends to oo for fixed t, and hence from the 

asymptotic forms of the functions qb(x), ~ (x)  given by [66] and [67], 

In a/ao~ 7 (1 + (Xo'/~x ~/3- Xo). [76] 
271aoG 

Thus In (a/ao) increases monotonically with x if Xo and x are large. Thus x > x,~, and hence 

M = 0 .  
Therefore M has a maximum unless d/dx (In a/a,~) is positive for all values of x in xo exp 

(-3/2Gt) < x < Xo for all Xo > 0 in which case M = 0 for all Xo for the particular time considered. 
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Figure 4A shows how this maximum magnification Mm,,, varies with "0*/r/ for a given 

~/[~aoG = 102. It is clear that it takes a longer time to arrive at a particular Minx for large ~*/r/ 

than for small r/*/r/. As Gt tends to 0, (Xo)op, tends to values which have already been calculated 
by Tomotika (1935) for the case of the stationary liquid cylinder, namely 0.257, 0.563 and 0.243 
for "0 * / r /=  10 -3, 1.0 and 102 respectively. This occurs since the chosen value of 3,/rlaoG is large. 

Figure 4B shows similarly the effect of ~,/71aoG on Mm~ for given r/*/~ = 10 -3. It is clear that 
disturbances grow more slowly for small "y/TlaoG than for large. As Gt tends to 0 with "y/~laoG 
sutiiciently large, (Xo)oo, tends to Tomotika 's  value of 0.257 for this case ( '0*/r /= 10-3). 

I0 

E 5 
~E 

C 
I0-' 

I0 -3 3.0 I --~* = 102/ 

/ 
'7 °"Y 0., ,.~ , . o ~  

,o/ ~ .0~ 
0"5 t 2 ~  y 

I0 10 3 I0 3 
(Xo) op, 

,o I,o./,o 'o 
o. s ~Oo 

01 yO.  S ' 0.1 5 .0  

0 .5  4.0  

3.0  

2 .0  
I 

IO-' IO IO 3 

(Xo)opt 

T i t  
-" iO-3  

I 
IO s 

Figure 4. Values of Mm,, and (Xo)op, for (A) various values of Gt and 7/*/~ with 7/rlaoG = 102, (B) various 
values of Gt and 3,/~aoG with "q*/~/= 10 -3. 

The values Xop, = (Xo)op, exp (-3/2Gt) of the wave number at time t for the disturbance of 
maximum amplitude can be determined as a function of Gt for various values of 7/TlaoG and 

"0*hT. These results, shown in figure 5, give values of xopt at Gt = 0 which agree in the limit of 
3dTlaoG ~ oo with the values calculated by Tomotika for the stationary case. As Gt increases, 
xo~t decreases to an asymptotic value, this decrease being most rapid when 7/~aoG is large. The 
calculated amplitude for 3,/TlaoG = 1.0, r /* / r /=  10 -3 and for 3,/~laoG = 10.0, ~ * / r / =  1.0, for small 
Xo did not take any minimum value as shown in figure 2A,B, this resulting in M being identically 
zero for all xo with Gt small. For still smaller values of 7/'oaoG, [~//'oaoG = 1 0 - ' - 1 0  -3, 
7/*/r/= 10 -3 and for 3drlaoG = 1 - 10 -~, r /* I t /=  1.0], the calculated amplitude did not take any 
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minimum value for Gt <- 10. This is why in figure 5A and figure 5B there are no calculated data for 

these values of 7/rlaoG. 
We now calculate the asymptotic value of xopt for Gt ~ ~. In this limit x a Xo since x = Xo exp 

(-3/2Gt).  Thus the magnification M will be greater than zero only if xo >> 1 since Xo of order unity 

with x small would imply that In a/ao ~ 1/3 In (X/Xo) yielding M = 0. Furthermore, one must also 

have x of order unity since d/dx (In a/ao) is positive (M = 0) for large x and Xo. This case 

involving Xo ~ ~ (x = 0(1)) has already been discussed (see [68]-[71]) and thus we obtain in the 

limit Gt ---> ~, 

In (a)~- r---Z--Xo'/' 3~aoG [77] 

This has a minimum at x = 1, giving 

= 3/ xo "3 r 1'  x - 4 / 3 ( l - x 2 ) ~ ( x ) d x ,  
3TlaoG .]xoe 3 / 2 0 '  

[78] 
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Figure 5. Calculated values of Xopt = (21ra/A)op, against Gt for (A) r/*/~ 7 = 10 -3, (B) rl*/r / = 1, and (C) 
~7 */ r /=  102 for various values of 7/~aoG. The numbers designate yhIaoG. 

where we have written x = xoexp (-3Gt/2) .  If we write 

f '  x-':3(1 - x2)~(x) dx, /(x) 
.Ix 

then 

[79] 

M = 7 . 3 : .  -3a , /2 .  [80] 
371aoG Xo Itxoe ). 
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For fixed Gt, M has a maximum value when dM /dxo  = 0 or 

[ ( xoe - ~ ' 2 )  + 3 xoe - ~ ' 2  [' ( xoe - ~"~)  = O. [81] 

Letting y ,  be the root of 

f ( y , ) +  3 y , f ' ( y , )  = O, [82] 

we see that 

giving 
xoe-3~'2 = Y *, [83] 

Xo,, = y , .  [84] 

Therefore, as Gt tends to infinity, Xo~, = ( 2 7 r a / A ) o o t  tends to a constant value, y , ,  where 

fr ' X-4/3(1 -- X2)~(X)  d x  - 3 y , - 1 / 3 ( 1  - y , 2 ) q b ( y , )  = O. [85] 

This value of y ,  is independent of y / ~ aoG  but does depend on r/*/~/since qb(x) depends on only 

r/*/'0. 
Calculated values of the variation of y ,  with r/*[-O are shown in figure 6. It is interesting to see 

that Xopt ( = y , )  takes maximum value y ,  . . . .  = 0.185 at r /*[r /= 0.14 in a manner similar to the 

stationary case (Xop .. . . .  = 0.589 at "0*/r/= 0.28). The asymptotic values of Xo~t obtained for 
r /* / r /= l0 -3, 1.0 and 102 [0.0670, 0.161 and 0.0440 respectively] agree with values shown in figure 
5. We have considered above, the conditions for maximization of ln (a /ao)  instead of 

ln[(a/a)/(ao/ao)] as considered by Tomotika (1936). Thus while we have considered a 
disturbance with an initial amplitude ao independent of column radius and disturbance wave 

length, Tomotika assumed an initial amplitude So proportional to ao/a which would therefore be 
varying with time. 

0.8 

0. I 

O t I ] ~ I I 
10 -3 I0  - i  I0 10 3 

n~ 

Figure 6. The values of y ,  (i.e. Xop, at Gt = ~) as a function of "q*/'0. 

Size o f  drop after breakup 

Assuming that the extending liquid thread breaks up when the amplitude of the disturbance 
which has the largest magnification at a given time t becomes equal to the thread radius, it is 
possible to calculate this time t (denoted by tb) and also to calculate the radius of drop R 
produced by breakup by using conservation of volume: 

R 
- -  = (Xopt)--113 e-OJ2, [86] 
ao  
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- - ~  (y.)-l/3 e c,,,/2 [87] 
ao 

Values of Rlao against Gtb for various values of 7/~aoG are plotted in figure 7 for rl*/~/= 10 -3, 

1.0 and 102. In all cases the particle radius, R/ao, decreases with the increase of Gtb, the value of 

R/ao becoming independent of y/~aoG at sufficiently large Gtb taking the value given by [87] 
(indicated as broken lines). At a given Gtb and y/~aoG, R/ao takes a smaller value for ~*/rl = 1.0 
than for "0*/rl = 10 -3 or 102 because Xop, in [86] take a larger value for rl*/~ = 1.0 than that for 
"0*/7/= 10 -3 or 10 2. 

We define E <~ 1 as the ratio (a,,/ao) of the disturbance amplitude (which was assumed to 
originate at x = x,.) to the initial column radius. Then 

which at breakup [a / a  = 1.0] gives 

in (c~m oz a )  
I n • =  \ a  a~oo [88] 

l n e - ' = l n  ~b 1 - -  + ~Gtb. 
Olm 

Substituting xb = Xo exp ( -3 /2Gtb) ,  we get 

In , - '  : In (a--~b~-~ln ( xb ) 
\Or., / ~oo ' 

where we are considering the wave causing breakup. Thus 

Xo : (Xo)o, , ,  

xb = (Xo)op, exp ( -  ~Gtb), 

[89] 

[90] 

[91] 

[92] 
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Figure 7. Rlao against Gt~ for (A) r/*/r/= 103, (B) r/*/~7 = 1, and (C) ~7*/r/= 102, for various yl~TaoG. The 
numbers designate yhTaoG and the broken lines the asymptotic values for large Gt, given by [87]. 
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giving 

l f l E  - I -  , ) , ,  ,ll3 f x ,  ( ~  ) x= 3~laoG [X°)°Pt e -°'d2 X - 4 1 3 ( 1  - -  x2)d~(x) dx - - 1 [ e 3°'d2 x-'~(x ) dx 
'J (XO)oOt " J (Xo)opt 

1, (Xo)op, 
+ ~ ,n ~ , [931 

where x,, is the value of x at minimum amplitude for Xo = (Xo)opt. Calculated values of In e -1 

against Gtb for various values of 7/~aoG are plotted in figure 8 for r/*/~ = 10 -3, 1.0 and 102 

respectively. From these results we can see that for a given e it takes longer time for the liquid 

thread to breakup for smaller values of y/rlaoG and also for larger values of "0"/'0. 
An upper bond for tb is obtained by noting that 

ab = aoe-Gtb/2 > 0/m, 

since if ab < a., we have an impossibility as the thread would already have broken up. Thus 

Gt, < 2 In ao/am. [94] 

This upper bound of Gtb is plotted as . . . . .  line in figure 8. As Gt tends to infinity, x,, - 1 and 

(Xo)opt ~ y ,  e 3°'d2, yielding 

1 I 

In - i  7 ,)u% c~j~ -3~aoG(Y ft. x-4/3(1-x2)*(x)dx-(-~--1)  f,. x- '~(x)dx +~ln y,  +~Gtb. 

[95] 
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Figure 8. In(adam) against Gtb for (A) "0"/11 = 10 -3, (B) ~* / r /=  1, and (C) r/*/'0 = 10 z, for various 7/rlaoG. 
The numbers designate 7/'OaoG, the lines . . . . .  the asymptotic values for large Gtb given by [96] and the 

lines . . . . . . .  the upper bound for Gtb given by [94]. 
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The first term dominates  as Gtb --> ~. Hence  

as Gtb -~ ~, where 

* 1 
In ( , -1)  ~ ~__..~e~,d2K(~ ' )  +-~Gtb + 0(1) 

"oa0o \ "0 / z 

~ ( y , )  fy.  X-413(1 --X2)dik(X) dx 

= (1 - y,2)dp(y,), 

[96] 

[97] 

[85] having been used. 

From figure 9 it is seen that K(~*hT) is a decreasing funct ion of "0*/rt, showing that tb 

increases with increasing "O*[r/ as already noted. 

Using [96], the asymptot ic  values of In (adam) were plotted as . . . .  lines in figure 8. The 

calculated relation be tween  R/ao and In (e -1) for various yhTaoG obtained f rom the relations 

be tween  Rlao and Gtb ([86]) and be tween  In (E -1) and Gtb ([93]) are shown in figure 10 for 

IO 

_j IO -i 

Z < 
IO -z 

Io-41 I ~ I , I J 

10 -3 I0 -I I0 10 3 

Figure 9. Functions K(~*/~) and L(~*/~l) defined by [97] and [102] respectively. 
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Figure 10. Relation between R/ao and In adam for (A) "q*/rt = 10 -~, (B) rt*/rt = 1, and (C) rt*/rt = 10 z, for 
various ylrlaoG. The numbers designate y/~?aoG, the lines . . . . .  the asymptotic values for large Gtb given 

by [101] and the lines . . . . . . . . .  the lower bound for In R/a, given by [100]. 
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rl */rl = 10 -3, 1.0 and 102. It is clear from these results, that except for very large disturbances for 

which e is not too small, the larger 77*/7/ is, the smaller R/ao will be for a given *laoG and ~. 
This means that if the liquid thread is very viscous, it will elongate to a thread of very small radius 
and remain stable for a long time before finally breaking up into drops of very small size. Also, 
smaller drops are produced by decreasing the value of 3,/'oaoG. A lower bound for R/ao may be 
obtained by considering the inequality ab > a,, discussed previously. Using [86], we obtain 

R (31r'~'/3ab / 3~' \ ' /3a, ,  

ao = k 2---~op,op, / --~o > t 2--~op, } -~o " 
[98] 

Hence 

lnR>~ln{3'n']-ln(a°) 
ao \2Xop,/ ~ " 

[99] 

The values of xopt for all r/*/r/and y/TlaoG would, from our theoretical calculations, appear to be 
bounded above by the maximum value 0.589 obtained from the case of the stationary liquid 

cylinder by Tomotika. If this is true, then 

lnR>~ln (1.~78)- In ( a° ) 
ao ~m " 

[100] 

This lower bound is plotted in figure 10 as . . . . . . .  line. For Gtb --* o0, we obtain from [87] and 

[96] 

R y _ , )_ lL (_ ~  ) [101] 
ao ~ *laoG (In 

where 

(-~) /3~\'/3- ._,/3.1 L =•T) tY,) t -Y,2)qb(Y,). [102] 

Asymptotic values calculated from [101] are plotted in figure 10 as . . . . .  lines. The function 
L(~*/*I), plotted in figure 9 is a decreasing function of ~*/r/, showing that R/ao is a decreasing 

function of r/*/~ as already noted. 

EXPERIMENTAL 

1. General 
While the theory described above applies to axisymmetric extensional flow, experiments were 

performed using plane hyperbolic flow, conducted in a "four-roller" apparatus the same as that of 
Rumscheidt & Mason (1961a). This discrepancy between the flows in the theory and experiment 
will be discussed later. Between the four vertical rollers of the apparatus, the viscous suspending 
fluid was floated on a layer of an immiscible liquid of higher density and much lower viscosity to 
eliminate the effect of drag exerted by the bottom of the container. 

Relative to X', Y', Z' axes with origin at centre of apparatus with the X'-axis chosen along 
the direction of maximum extension and the Y'-axis along the maximum contraction, the flow 
field produced by the rotating rollers may in the central region, be described as 

m p _ t U x - G X ' ,  U y - - G Y ,  U;=0 ,  [103] 

where U', U~ and U; are respectively the X'-, Y'- and Z'-components of velocity, G being the 
extension rate.t 

Following the method used by Taylor (1934), the hyperbolic flow was calibrated by measuring 

*The quantity G defined here is 1/2 that used by Rumscheidt & Mason (1962). 



130 T. MIKAMI, R. G. COX and s. G. MASON 

the time needed for a tracer particle to move some given projected distance on the X'-axis and 
also the rotation speed N of the rollers by means of a self-timing tachometer. It was found that 
the value of the extension rate G so obtained was linearly proportional to N with 

G = 9.71 × 10 -3 N For 4.0 cm dia rollers, 
.G = 2.52 × 10 -2 N For 6.0 cm dia rollers, 

N being measured in rev/min with G in sec -j. 

A single drop of the fluid to be pulled out into a thread was put in the suspending fluid close to 
the central position by direct injection from a syringe through a hypodermic needle, the diameter 
of drop ranging from 4 mm to 8 mm. After the apparatus was started and a good symmetrical drop 
elongation obtained, the subsequent decrease in thread radius and final breakup were observed 

by means of a microscope and a Bolex 16 mm cine-camera at a film speed of 32 frames per sec, 

the viewing direction being parallel to the axes of the rollers. Accurate film speeds were obtained 
by measuring the time of film run and comparing it with the number of frames which were 
indicated on the camera. 

A frame-by-frame analysis of the film gave the liquid thread radius and the wave length of the 
surface wave just before breakup. Overall magnification upon projection of the film was about 
89x. 

The apparatus was operated at a room temperature of 23_+ 0.5°C. 

2. Materials 

Castor oil (Fischer Scientific Co.) was used as the suspending phase which was floated on 
water with sugar added to increase density. 

Silicone oils of 100cs and 1000cs (Dow Corning fluid 200) were used as drop phase, the 
properties of these materials being shown in table 1. 

Table 1. Properties of materials (temperature at 23°C) 

System Drop Continuous r/* r/ p * p y 
No. phase phase (poise) (poise) ~7*/r t  (g/cm 3) (g/cm 3) (dyne/cm) 

1. Silicone oil Castor 10.7 7.28 1.46 0.973 0.959 5.2 
1000 cs oil 

2. Silicone oil Castor 1.08 7.28 0.148 0.968 0.959 4.6 
100 cs oil 

Note: p* and p are densities of drop and continuous phase. 

R E S U L T S  AND D I S C U S S I O N  

It was observed that breakup under extension of the liquid thread is characterized by the 

formation of large drops connected by thin liquid filaments, which on further extension develop a 
secondary varicosity and break up, leaving a myriad of satellite droplets between the larger 
principal drops. Furthermore, in contrast to the breakup of a stationary liquid thread (Rumscheidt 

& Mason 1962), breakup under extension does not occur simultaneously over the entire length of 
the thread, the spacing between principal drops is not constant and the filaments do not give rise 
to the same number of droplets. Thus the breakup products in this case lack uniformity in size. 

The decrease in the thread radius with time of extension is illustrated in figure 11, a linear 
variation of log a with time, as pre~licted by [40], being obtained. Liquid threads could usually be 
stretched until the thread radii were below 0.01 cm, after which breakup occurred. 

The values of G calculated from the slopes of the lines in figure 11 using [40] were compared 
with those which were obtained by the tracer method explained previously. Results are shown by 
closed circles in figure 12. There is some difference between these values of G, especially for 
larger values of the extension rate. One possible explanation for this is that because plane 
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Figure 11. Linear variation of In a/ao with time for four values of N; (A) 25 rev/min, (B) 30 rev/min, (C) 
34 rev/min, (D) 40 rev/min. Suspending phase is castor oil and extending thread phase is silicone oil of 100 cs. 
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Figure 12. Comparison of G ...... obtained by tracer particle method with Gexp obtained from experimental 
measurements of thread radius (i) by the use alao = e -~'/~ [40] indicated by closed circles, and (ii) by the use 

of alao = e -a' indicated by open circles. 

hyperbolic flow is being used the liquid thread undergoing extension might be slightly more 

compressed in the direction of the Y'-axis than in the direction of the Z'-axis, the liquid thread no 

longer being of circular cross-section. However, due to interfacial tension trying to make the 

thread cross-section circular, considerable reduction of thread dimension in the Z'-direction 

from the initial value ao is to be expected. In fact, if the experimental results in figure 11 are used 

to compute G by using the result a/ao = e - ° '  for no compression in the Z'-direction (rather than 

the result of alao = e-° 'n) ,  the values obtained (shown by open circles in figure 12) show a very 
large error when compared with values of G obtained by tracer particles. This suggests that the 

flow close to the extending thread is approximately an axisymmetric extensional flow rather than 

a plane hyperbolic flow, and that the theory described in the previous sections may be expected 

to apply. A detailed discussion of the flow around a thread in a plane hyperbolic flow is given in 

appendix III, where it is shown theoretically that for the present experiments the thread has an 

approximately circular cross-section, its stability being essentially the same as that of a thread in 
axisymmetric extensional flow. 

We next measured the wavelength of the principal wave, A~ just before breakup of liquid 
thread. The thread radius at breakup ab was calculated from [40] using the value of G calibrated 
by the tracer particle method and measured values of ao and tb. This time to breakup, tb, was 

measured from an initial time (at which a = ao) chosen not too long after application of 
extensional flow, so that waves would not already have been amplified, and also not too soon 
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after application of flow, so that one would have a uniform liquid thread. The experimentally 
obtained breakup time, tb and breakup radius ab were plotted against G in figure 13A and B 
respectively for System 1 (r/*/'O = 1.46, 3' = 4.6) and System 2 (-q*/r/= 0.148, 3' = 4.6). Both tb 
and ab decrease with increase of G, ab for System 2 being larger than that for System 1. Thus as 
indicated by the theory (see figure 10) the larger the viscosity ratio "O*/'O, the more stable the 
liquid cylinder and the smaller the value of ab. 

Both measured values and calculated theoretical values of 2~rab/)~b vs Gt~ are shown in figure 
14 for Systems 1 and 2. Although the experimental values were scattered around the theoretical 
values, the agreement is considered to be good. The reason for the scatter of the data might be 
due to the fact that the wavelength at the breakup point was not so regular and reproducible as for 
the case where there was no extensional flow. 

The theory can predict the wave number 27rab/Ab at breakup and hence the resulting drop 
diameter if the values of r/*/r/, 3'/~aoG and In adam are known. As shown in figure 10, large r/*/r/ 
and small 3'/~aoG are better for getting smaller R/ao at fixed In adam. For given fluid properties 
and extension rate, one requires the value of a,,, the disturbance amplitude to evaluate R/ao. For 
the breakup of a stationary liquid thread (Rumscheidt & Mason 1962) the value of am is of the 
order of 10 - ~ -  10 -6 cm. On the other hand, Kuhn (1953) considered the case where these initial 
disturbances come from thermal fluctuations only and found that, for a jet of Newtonian fluid, am 

is 
/(  21kT 

a . ,  = ~ / ~ , 8 ~ - ~ ) '  [104]  

where k is Boltzmann's constant, T the absolute temperature, and 3' the surface tension. This 
gives values of a,, in the range 10-~-10 -8 cm. The calculated values of In adam from the present 
experimental results (i.e. from the values of Gtb shown in figure 13) were in the range 8.8-12.0. 
Since ao was of the order of 0.1 cm, this yielded am in the range 6.6 × 10 7--1.5 × 10-' cm. 
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Figure 13. (A) Experimentally obtained breakup time tb vs extension rate G for System 1 (solid circles. 
r /*/ '0 = 1.46, ~ /=  5.2) and System 2 (open circles, r/*/rt =0.148, 3' = 4 . 6 ) .  (B) Experimentally obtained 

breakup radius ab of liquid thread vs extension rate G. All points correspond to those in (A). 
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Figure 14. Theoretical (line) and experimental (point) wave numbers at breakup as functions of Gtb for (A) 
Systems 1 and (B) System 2. 

For all experiments performed, the Reynolds number, ao2G/v was very small (of order 
10-3), this being a necessary condition for the theory to apply. 

As mentioned before, it was observed that during the breakup of the extending liquid thread, 
drops connected by thin liquid filaments are formed, these filaments themselves then breaking up 
to a myriad of satellite droplets between the larger principal drops. Thus the actual average 
particle radius will be smaller than that predicted by this theory. For this reason we did not 
measure drop size in experiments to confirm the theory. However, it is seen from figure lO that 
the requirements for producing drops of small size by applying extensional flow to a liquid thread 
are that (i) the viscosity ratio r/*/r/is large and (ii) the parameter, y/r/aoG is small. For example, 
if we chose r/*/r/= 102, y/r/aoG = 1, and ao= 10-2cm, and assume a,, = 10-6cm, we get 
R/ao = 5 × 10 -3, the values of R = 0.5/x being obtained. This gives G(sec -~) = (y/r/) × 102 and 
tb(sec) = 13.3 × 10 -~ r//y where the units of r/ and 7 are poise and dyne/cm respectively. It 
should be noted that for the theory to apply the value of 7/r/aoG should not be too large, 
otherwise the drop would never be pulled into a liquid thread. 

In the axisymmetric extensional flow the line of fluid particles through the drop centre which 
is extending at the greatest rate, namely that parallel to the z-axis, remains in that direction as 
long as the flow continues. Thus the stress due to the viscous drag of the suspending medium is 
therefore always tending to further extend the liquid thread in the same direction. However, in a 
shear flow, the line of particles which lie in the direction of maximum rate of extension, namely at 
45 ° to the direction of flow is continually being rotated away from that position. 

In fact, when the viscosity ratio r/*/7/ is very large, a drop in a shear flow will rotate almost 
like a solid body, lines of particles in it extending slowly while they are within 45 ° of the direction 
of maximum rate of extension and contracting slowly while they are within 45 ° of the direction of 
maximum rate of contraction. Hence the drop experiences very little deformation and will not 
break up at all if r/*/r/ is greater than approximately 3.6, however large the shear rate may be 
(Rumscheidt & Mason 1961b; Torza et al. 1972). Thus for large r/*[r/, an extensional flow is very 
much more effective in producing very small drops than a shear flow. 
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APPENDIX I: ASYMPTOTIC FORMS OF O(x) AND }(x) 

[I-A] The series expansions of the modified Bessel functions correct to 0(x') about x = 0, 

1 2 1 4 Io(x)- 1 +~x +-~x 

½ 1,  
I , ( z ) ~ x  + x'  +-5-~x , 

x- '  + (y 1 1 K,(x) + -~ x + l-i~ x ), \ 

when substituted into [57] and [58], yield 

' 4 0 ,nx>, 

0(x a In x), 

= 1 
~ ( x ) - x  l n ~ x  a s x - + 0 .  

[I-B] The asymptotic expansions of the modified Bessel functions for large x are 

e" (1 1 9 75 .), 
Io(x) V'(2~-x) +8--x+~+10--0-~x 3+'"  

eX ( 3  15 105 ) 
L(x) ~/(2~'x) 1 8x 128x 2 1024x 3~-' '" ' 

Ko(x)_~/(~x)e_X(l  1 9 75 .), 
- ~xx + 12-~-~x - 1024x 3 )-'" 

3 15 105 .), 
K , ( x ) -  ~/(~x) e-X(1 + 8--~- - 128x2 + 10--0-~x 3+'" 

[I-l] 

]i-21 
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which when substituted into [57] and [58] yield 

~,(x)- ( ~ + ~)-lx -', 

~,(x) ~ - ~ Q +-~)-Ix -1 

[I-3] 

as x---)oo. [I-4] 

A P P E N D I X  lI :  N U M E R I C A L  C A L C U L A T I O N  OF THE R E L A T I V E  A M P L I T U D E  E Q U A T I O N  

For convenience of numerical integration, the integrands in [65] were divided into the two 
terms 

f x X ° F ( x ) d x = f j F ( x ) d X - f x l  ° F(x)dx,  [11-1] 

the integrals being evaluated by the Runge-Kutta method. Due to the necessity of evaluation for 
large xo, the second integral was evaluated numerically up to x = 40, the remaining part 
(40 < x < xo) being obtained analytically from the asymptotic form of the integrand (derived from 
the asymptotic forms of ~(x) and ~(x) given in [66] and [67]. That the exact and asymptotic 
forms of • and ~ are almost identical for x >40 is shown in figure 15. 

0.10 

ODE 
"0 

C 

-ODE 
0 

~ ' ~ ( x )  

f 
_~,q ..................... 

i I i 
2~ ,o 65 8o 

× 

Figure 15. Comparison of exact (solid line) and asymptotic (broken line) values for qb(x) and ~(x). 

Thus for Xo > 40 and x < 40, [65] is approximated by 

, -1  1 x 
- ( - ~ - l ) [ f x 4 ° x - ' ~ ( x , d x + ~ ( l + - ~ - ~ )  (Xo-I - 40-1,J ÷ ~ln ~o. [11-2] 

A P P E N D I X  I l l :  L I Q U I D  THREAD IN P L A N E  H Y P E R B O L I C  FLOW 

Relative to the cylindrical polar coordinates shown in figure 1, a plane hyperbolic flow in the 
t# = 0 plane with maximum extension rate G in the z-direction may be represented as 

ur = -Gr  cos 2 t#, 

us = +Gr sin 6 cos ~b, 

Uz = + G z .  

[III-1] 

This may be expressed as the sum of two flows, 

U = U t + U", [III-2] 

where u' is the axisymmetric extensional flow 
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, 1 
U r = -- ~Gr, u£ = O, u'z = +Gz,  [III-3] 

and u" is a flow in planes perpendicular to the z-axis, 

l 1 
" " = + ~Gr  u ,  = - ~Gr  cos 2~b, u ,  sin 2~b, u" = 0. [Ili-4] 

A thread of fluid suspended in the flow u' has already been examined. We will therefore examine 

the effect of the flow u" on the thread which is assumed to have an approximately circular 
cross-section given by 

r = a +f (O) ,  [III-5] 

where [ ( ~ a )  is a function of 4~ only. The flow u* inside and n outside the thread due to u" satisfies 
.the creeping motion equations with 

u - u",  a s  r - ~  0% [11I-6] 

with the boundary conditions on the surface being: 

(i) Zero normal velocity 

u , = u ~ = O  o n r = a ,  [III-7] 

(ii) Continuity of tangential velocity 

u , = u *  o n r = a ,  

(iii) Continuity of tangential stress 

[OUo q l OUr UO) ,{On*+ I OU*r ~ )  
r/~-~-- rO4~ = '0  ~ - ~ -  r O~b o n r = a ,  

(iv) Balance of normal hydrodynamic stress by interfacial tension 

- ( - p * + 2 r / *  O r / + ( _  p +2~7_~.) = 3' 
a + f +  d~f 

d4~ 2 

[III-8] 

[III-9] 

on r = a, [III-lO] 

where p* and p are the pressures fields corresponding to u* and u respectively. Defining a stream 
function 6* inside the thread by the relations 

u* = 1 06* u* = &b* [III-11] 
r 0¢  ' Or ' 

and the stream function ~0 outside the thread similarly, it is seen that 6* and ~ satisfy equations 
of the form 

[ 1 0 _ _ ( r  O_" ~ 1 0 2 12 
r a r  ,, at j +  , ~  7~ ~--~ [ ~o*--- 0. [II1-12] 
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From the value of u" given in [111-4], the boundary condition [11I-6] may be written as 

4' ~ - ~Gr 2 sin 25 as r ~ oc. [III-13] 

Thus assuming 4' and 4'* to be proportional to sin 25 the solution of [III- 12] gives 

4'* = (Cr 2 + Dr4)sin 25, 

4 ' = ( - ~ G r 2 + A +  Br-2)sin 25, [III-14] 

where A, B, C, D are constants and where boundary condition [111-13] and the requirement that 
u* be bounded at r = 0 have been used. Substituting these values of g'* and 4' into the boundary 
conditions [III-7,8,9], the values of A, B, C and D may be obtained to give 

( ~1__ 2 ~ _ a - 2 r , )  4'* = G sin 25 4(r/+ r/*) r 4(r/+ 7/*) 

4 ' = G s i n 2 5 ( _ ~ r 2 + ( ~ + 2 r / * )  2 ~ --4r-2X [III-15] 
~-q T ~-~ u 4(~7 + ~7.) u )" 

Obtaining the values of u* and u from [III-11] and substituting into the creeping motion equations 
gives the corresponding pressure fields p* and p as 

p* - ~*- (, a-2r2G'o cos 25 + constant, 

"0+277* 2 -2~ 
P--- "r/+7* a r o~ c0s25 +constant. [III-16] 

The normal stress boundary condition [III-10] upon substitution of the values of p, p*, u and u*, 
gives 

- 3Gr/cos 25 + constant = 3t d=f. [III-17] 

a + f + d 5 2  

Since f ~ a  

Hence 

/ r12$\ 
- 3 G n  cos25 +constant= _.Y__Z | [  +_Z~.~ ~ a a 2 \ C l ~ - ]  

giving 

[III-18] 

d2f + f = 3GTla2 cos 25, [III-19] 

f = G~la 2 
- -  cos 25. [III-20] 

T 

Thus the cross-sectional shape of the thread is 

r = a(l  - GTacos 25 ). [III-21] 

1JMF VOL. 2 NO. 2--C 
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As a measure of the deformation of the cross-sectional shape from circular we define a quantity 

L - B  
D L + B  [III-22] 

where L = 2a[1 +(G~a)]  is the maximum and B = 2 a l l - ( G ~ a / T ) ]  is the minimum distance 

across the thread cross-section. Thus 

D = C,~.._..,a _ G•ao e-o,/z,  [1II-231 
7 7 

so that at large times, the cross-section becomes circular. In the experiments performed here, the 

value of D calculated from [111-23] decreased from 1.4 × 10 -2 to 1.9 × 10 -3 for System 1 and from 

1.6× 10 -2 to 3.9× 10 -3 for System 2 as t increased from 0 to tb. Hence the effect of the 

deformation from circular of the cross-section should be negligible. 

Furthermore, if one includes the flow field u" in the stability analysis, the boundary conditions 

[18], [30] and [35] are unaltered if one again considers disturbances of the form given by [12]. This 

means that the stability of a thread in plane hyperbolic flow given by [III-1] is identical to that of a 
thread in the axisymmetric extensional flow [Ili-3] provided of course that D given by [111-23] 

remains small (at least over a major fraction of time from t = 0 to t = tb) as in the present 

experiments. 

R6sum6----On 6tudie th6oriquement et exp6rimentalement la stabilit6 et la rupture d'un filet cylindrique de 
liquide visqueux en extension, suspendu dans un liquide visqueux non miscible soumis ~ un 6coulement avec 
extension. 

On montre que les perturbations cr6~es 5. la formation du filet sont en g6n6ral, lorsque le temps s'~coule, 
amorties, puis amplifi6es et finalernent amorties ~ nouveau. En consid6rant que des perturbations sont 
constamment apport6es au syst~me, on trouve ainsi que la perturbation qui domine ~t un instant donn6 est 
compl~:tement diff6rente de celle qui domine 5. tout autre instant. En admettant que la rupture advient quand 
ramplitude de la perturbation atteint le rayon du cylindre, on obtient le temps de rupture et la taille finale des 
gouttes r6sultant de la rupture en fonction des propri6t6s des fluides, du taux d'extension et de l'amplitude des 
perturbations apport6es au syst~me. 

Ces r6sultats ont 6t6 confirm6s par l'examen, au moyen de la cin6matographie, de la rupture d'un filet 
liquide dans un 6coulement hyperbolique. 

Auszug---Die Stabilitaet und der Zerfall eines sich ausdehnenden zylindrischen Fadens zaeher Fluessigkeit, 
der in einer nicht mischbaren zaehen Fluessigkeit mit Dehnungsstroemung schwebt, wird theoretisch und 
experimentell untersucht. 

Es zeigt sich, dass die bei Bildung des Fadens ausgetoesten Stoerungen im allgemeinen im Laufe der Zeit 
zuerst gedaempft, spaeter verstaerkt, und schliesslich wieder gedaempft werden. Eine Betrachtung yon dem 
System kontinuierlich zugefuehrten Stoerungen zeigt, dass eine momentan vorherrschende Stoerung von den 
zu anderen Zeiten auftretenden voellig verschieden ist. Unter der Annahme, dass der Zerfall geschieht, wenn 
die Stoerungsamplitude dem Zylinderradius gleich wird, werden Ergebnisse fuer die Zeit bis zum Zerfall und 
die resultierende Tropfenendgroesse erhalten, in Abhaengigkeit von den Fluessigkeitseigenschaften, der 
Ausdehnungsgeschwindigkeit und der dem System aufgepraegten Stoerungsamplitude. 

Zur Bestaetigung der Ergebnisse wurde mit Hilfe yon Kinematographie der Zerfall eines Fluessigkeitsfa- 
dens hyperbolischer Form beobachtet. 

Pe31OMe----BblHOJIHeHbl TeOpeTHqeCKHe H 3KCHepHMeHTaHbHble HCCJIe~OBaHttR yCTO~ILIHBO - 
CTH H pacnaRa BbIT~gFHBaHHH B~[3KO~ )KH~KOI~ HHHHH~pHtleCKO~i HHTH, B31~IJ.IeHHO~ BO HeB3aH- 
MORC~iCTBylOIReM B~I3KOM )KH~KOM HOTOKC, npOH3BO~I~IHICM BI~ITg)KKy. 

]-[OKa3aHO, ~ITO BO3MyIIIeHH~I, BbI3BaHHbIC ~bOpMHpOBaHHCM HHTH, ~yHyT no MOpe BpeMeHH 
TOpMO3HTbC~I, 3aTeM yCtL~TbCg, a B KOHIIC BHOBb 3aTyXaTb. ['IpH paCCMOTpeHHH hOMe×, 
nOCTOHHHO IIpH.rIO)KCHHbIX K CHCTeMe, Hal~eHO, qTO npeoSJIaRa~oma~ B ~aHHbIl~ MOMenT 
HOMCXa COBepmCHHO OTHHqaeTc~ OT TOt~, l~OTOpa~t npeoS~Ia~aeT B Kax~ott-Jm50 Rpyro~ 
MoMenT. 1-Ipc~r~o~iara~, ~TO pacna~ npOHCXO~HT HpH ~OCTH)KeHHH aMIIJIHTy~Io~ nOMCXH 
3HatIeHH~i paRHyca IIHHHH~Ipa, HoHytICHbI Bb~pamcHHS ~ S  BpCMCHH pacna~ia H ~ s  KOHCtIHOFO 
pa3Mcpa KanHH, BbIT~KalOIIIHC H3 yCHOBHI~ pacnaRa, 3aBHC~IIUHX OT CBOflG~TB )IqHHKOCTH~ 
CI(OOOCTH BbITflFHBaHHfl H aMHHHTy~lbl HOMCXH, HpHHO~eHHO~ K CHCT~Me. 

~TH pa3ynbTaTb~ 5b~J~H HO~T~ep~K/IeHM HccReJ~OBaHHeM pacna~la 3KH~KOg HHTH B 
FHHep~OJIH3HpOBaHHOM rIOTOKC nOCpe/ICTBOM KHHOC'b~MKH. 


